Abstract

Maximum latewood density (MXD) measurements from high-elevation/-latitude sites are an important proxy for summer temperature reconstructions. Here, we present 201 MXD series from living larch (Larix decidua Mill.) trees that were growing at around 850 and 1450 m a.s.l. in the Slovakian Tatra Mountains, together with 56 MXD series from historical timbers of the same species and region. We explore the climate signal at the high- and low-elevation sites and assess the effects of varying temperature and precipitation regimes on MXD formation. Ranging from spring temperature to summer precipitation, the elevation-specific climate sensitivity suggests that the MXD measurements from living and relict sources should not be merged for paleoclimatic studies. This finding emphasizes the challenge of attributing a predominant climate factor that controls wood formation across a wide range of historical constructions. A better understanding of the ‘true’ climate signal requires more samples during the period of overlap between the living and historical trees.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call