Abstract

Abstract The feeding activity of warm- and coolwater fishes can be severely restricted during the long period of cold temperatures characteristic of winter in temperate zone lakes and rivers. The effect of such restriction is greater for smaller fish. Weight-specific basal metabolism increases as size decreases; however, there is no corresponding increase in energy storage capacity. Thus, smaller fish tend to be less tolerant of starvation conditions because they exhaust their energy stores sooner. Such size dependence of starvation endurance has often been observed in laboratory experiments. In wild populations commonly subject to winter starvation, population viability hinges on the ability of young of year to complete a minimum amount of growth during their first year of life. From south to north, this ability is increasingly restricted as the growing season shortens and the starvation period lengthens. We show that this constraint is sufficient to explain the present locations of the northern distribu...

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.