Abstract

AbstractRegional climate models are widely used to assess current and future impacts of climate change. In this study, we evaluate the performance of regional climate models from the Coordinated Regional Climate Downscaling Experiment programme integrated over the following three CORDEX domains: AFR, MNA and WAS. Four meteorological variables (temperature, precipitation, solar radiation and cloud cover) were evaluated over Syria at a grid spacing of 0.44°. The performance of five models in simulating the present climate characteristics (1989–2008) is evaluated with respect to the observations: CRU, ERA5 reanalysis and SARA and CLARA satellite data. We find that the mini-ensemble captures well the general spatial patterns and annual cycles of the selected variables. Anotheraim of this study was to assess the expected change of the mentioned four climate variables over Syria under the moderate emission scenario (RCP4.5) and the high emission scenario (RCP8.5) in the near future (2031–2050) and in the far future (2080–2099) with respect to the present climate (1989–2008). The simulations show a decreasing trend in cloud cover (between 6% and 10%) and precipitation (up to 9%) by mid and late century, regardless of the forcing scenarios. The simulations show a pronounced warming over Syria, which is expected to reach 6 °C by the end of the twenty-first century following the high greenhouse gas concentration scenario (RCP8.5). Furthermore, such an increase, combined with a decrease in precipitation, will shift Syria’s climate towards a more arid one.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call