Abstract
Planetary climates are strongly affected by planetary orbital parameters such as obliquity, eccentricity, and precession. In exoplanetary systems, exoterrestrial planets should have various obliquities. High-obliquity planets would have extreme seasonal cycles due to the seasonal change of the distribution of the insolation. Here, we introduce the Non-hydrostatic ICosahedral Atmospheric Model (NICAM), a global cloud-resolving model, to investigate the climate of high-obliquity planets. This model can explicitly simulate a three-dimensional cloud distribution and vertical transports of water vapor. We simulated exoterrestrial climates with high resolution using the supercomputer FUGAKU. We assumed aqua-planet configurations with 1 bar of air as a background atmosphere, with four different obliquities (0°, 23.5°, 45°, and 60°). We ran two sets of simulations: (1) low resolution (∼220 km mesh as the standard resolution of a general circulation model for exoplanetary science) with parameterization for cloud formation, and (2) high resolution (∼14 km mesh) with an explicit cloud microphysics scheme. Results suggest that high-resolution simulations with an explicit treatment of cloud microphysics reveal warmer climates due to less low cloud fraction and a large amount of water vapor in the atmosphere. It implies that treatments of cloud-related processes lead to a difference between different resolutions in climatic regimes in cases with high obliquities.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.