Abstract

Abstract. The Paris Agreement has initiated a scientific debate on the role that carbon removal – or net negative emissions – might play in achieving less than 1.5 K of global mean surface warming by 2100. Here, we probe the sensitivity of a comprehensive Earth system model (GFDL-ESM2M) to three different atmospheric CO2 concentration pathways, two of which arrive at 1.5 K of warming in 2100 by very different pathways. We run five ensemble members of each of these simulations: (1) a standard Representative Concentration Pathway (RCP4.5) scenario, which produces 2 K of surface warming by 2100 in our model; (2) a “stabilization” pathway in which atmospheric CO2 concentration never exceeds 440 ppm and the global mean temperature rise is approximately 1.5 K by 2100; and (3) an “overshoot” pathway that passes through 2 K of warming at mid-century, before ramping down atmospheric CO2 concentrations, as if using carbon removal, to end at 1.5 K of warming at 2100. Although the global mean surface temperature change in response to the overshoot pathway is similar to the stabilization pathway in 2100, this similarity belies several important differences in other climate metrics, such as warming over land masses, the strength of the Atlantic Meridional Overturning Circulation (AMOC), ocean acidification, sea ice coverage, and the global mean sea level change and its regional expressions. In 2100, the overshoot ensemble shows a greater global steric sea level rise and weaker AMOC mass transport than in the stabilization scenario, with both of these metrics close to the ensemble mean of RCP4.5. There is strong ocean surface cooling in the North Atlantic Ocean and Southern Ocean in response to overshoot forcing due to perturbations in the ocean circulation. Thus, overshoot forcing in this model reduces the rate of sea ice loss in the Labrador, Nordic, Ross, and Weddell seas relative to the stabilized pathway, suggesting a negative radiative feedback in response to the early rapid warming. Finally, the ocean perturbation in response to warming leads to strong pathway dependence of sea level rise in northern North American cities, with overshoot forcing producing up to 10 cm of additional sea level rise by 2100 relative to stabilization forcing.

Highlights

  • In late 2015, the Paris climate accord promoted the goal of keeping a global temperature rise to well below 2 K above preindustrial levels, and to pursue further efforts to limit the temperature increase to 1.5 K

  • We probe the sensitivity of a comprehensive Earth system model (GFDL-ESM2M) to three different atmospheric CO2 concentration pathways, two of which arrive at 1.5 K of warming in 2100 by very different pathways

  • Our goal in setting up the two new pathways was to limit global mean surface warming to 1.5 K by 2100 by altering atmospheric CO2 concentrations in drastically different manners that reflect two extremes of hypothetical short-term and long-term climate policy

Read more

Summary

Introduction

In late 2015, the Paris climate accord promoted the goal of keeping a global temperature rise to well below 2 K above preindustrial levels, and to pursue further efforts to limit the temperature increase to 1.5 K (http://unfccc.int/files/essential_background/convention/ application/pdf/english_paris_agreement.pdf, last access: 11 June 2018). Our model realizes approximately 2 K of warming by 2100 under the RCP4.5 forcing These simulations are compared to idealized “stabilization” pathway simulations in which global warming is held below 1.5 K by reducing the rate of increase in atmospheric CO2 concentrations starting in 2018, so as to only reach 440 ppm CO2 by 2100 (Fig. 1a). Our goal in setting up the two new pathways (i.e., stabilization and overshoot) was to limit global mean surface warming to 1.5 K by 2100 by altering atmospheric CO2 concentrations in drastically different manners that reflect two extremes of hypothetical short-term and long-term climate policy.

Model and simulation description
Analysis methods
Global average properties
Regional patterns tied to the ocean circulation perturbation
Findings
Conclusions
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call