Abstract

Abstract. We present a carbon-cycle–climate modelling framework using model emulation, designed for integrated assessment modelling, which introduces a new emulator of the carbon cycle (GENIEem). We demonstrate that GENIEem successfully reproduces the CO2 concentrations of the Representative Concentration Pathways when forced with the corresponding CO2 emissions and non-CO2 forcing. To demonstrate its application as part of the integrated assessment framework, we use GENIEem along with an emulator of the climate (PLASIM-ENTSem) to evaluate global CO2 concentration levels and spatial temperature and precipitation response patterns resulting from CO2 emission scenarios. These scenarios are modelled using a macroeconometric model (E3MG) coupled to a model of technology substitution dynamics (FTT), and represent different emissions reduction policies applied solely in the electricity sector, without mitigation in the rest of the economy. The effect of cascading uncertainty is apparent, but despite uncertainties, it is clear that in all scenarios, global mean temperatures in excess of 2 °C above pre-industrial levels are projected by the end of the century. Our approach also highlights the regional temperature and precipitation patterns associated with the global mean temperature change occurring in these scenarios, enabling more robust impacts modelling and emphasizing the necessity of focusing on spatial patterns in addition to global mean temperature change.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.