Abstract

Abstract Earth’s arid subtropics are situated at the edges of the tropical belt, which encircles the planet along the equator and covers half of its surface area. The climate of the tropical belt is strongly influenced by the Hadley cells, with their subsidence and easterly trade winds both sustaining the aridity at the belt’s edges. The understanding of Earth’s past, present, and future climates is contingent on understanding the dynamics influencing this region. An important but unanswered question is how realistically climate models reproduce the mean state of the tropical belt. This study augments the existing literature by examining the mean width and seasonality of the tropical belt in climate models from phase 5 of CMIP (CMIP5) and experiments from the second phase of the Chemistry–Climate Model Validation (CCMVal-2) activity of the Stratospheric Processes and Their Role in Climate (SPARC) project. While the models overall reproduce the structure of the tropical belt width’s seasonal cycle, they underestimate its amplitude and cannot consistently reproduce the seasonal cycle lag between the Northern Hemisphere Hadley cell edge and subtropical jet latitudes found in observations. Additionally, up to 50% of the intermodel variation in mean tropical belt width can be attributed to model horizontal resolution, with finer resolution leading to a narrower tropical belt. Finer resolution is associated with an equatorward shift and intensification of subtropical eddy momentum flux convergence, which via the Coriolis torque explains essentially all of the grid-size bias and a large fraction of the total intermodel variation in Hadley cell width.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call