Abstract

Exploring changes of building energy consumption and its relationships with climate can provide basis for energy-saving and carbon emission reduction. Heating and cooling energy consumption of different types of buildings during 1981-2010 in Tianjin city, was simulated by using TRNSYS software. Daily or hourly extreme energy consumption was determined by percentile methods, and the climate impact on extreme energy consumption was analyzed. The results showed that days of extreme heating consumption showed apparent decrease during the recent 30 years for residential and large venue buildings, whereas days of extreme cooling consumption increased in large venue building. No significant variations were found for the days of extreme energy consumption for commercial building, although a decreasing trend in extreme heating energy consumption. Daily extreme energy consumption for large venue building had no relationship with climate parameters, whereas extreme energy consumption for commercial and residential buildings was related to various climate parameters. Further multiple regression analysis suggested heating energy consumption for commercial building was affected by maximum temperature, dry bulb temperature, solar radiation and minimum temperature, which together can explain 71.5 % of the variation of the daily extreme heating energy consumption. The daily extreme cooling energy consumption for commercial building was only related to the wet bulb temperature (R2= 0.382). The daily extreme heating energy consumption for residential building was affected by 4 climate parameters, but the dry bulb temperature had the main impact. The impacts of climate on hourly extreme heating energy consumption has a 1-3 hour delay in all three types of buildings, but no delay was found in the impacts of climate on hourly extreme cooling energy consumption for the selected buildings.

Highlights

  • Global surface temperature increased 0.4 ~ 0.8°C between the start and the end of the 20th century and the temperature will rise between 1.8 ~ 4.0°C at the end of the 21st century with an increase in extreme events [1]

  • Except some previous studies concerning on peak electrical energy demand [12,13], no corresponding study has, so far, been attempted for the extreme energy consumption that is related to the energy saving measures or safety operation of Heating, Ventilation and Air Conditioning (HVAC)

  • Or hourly extreme energy consumption was determined by percentile methods and the climate impact on extreme energy consumption was analyzed

Read more

Summary

Introduction

Global surface temperature increased 0.4 ~ 0.8°C between the start and the end of the 20th century and the temperature will rise between 1.8 ~ 4.0°C at the end of the 21st century with an increase in extreme events [1]. The significant warming climate of the whole world due to the global climate change is considered to have strong effects on a building’s energy requirement or usage as their heating and cooling needs are related to temperature conditions and weather variations [2,3]. Many previous studies have concerned the climate impact on building energy usage in recent years by using cooling/heating degree days [4,5,6], or by simulating energy consumption [7,8,9]. Except some previous studies concerning on peak electrical energy demand [12,13], no corresponding study has, so far, been attempted for the extreme energy consumption that is related to the energy saving measures or safety operation of Heating, Ventilation and Air Conditioning (HVAC)

Objectives
Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call