Abstract
The nymph of the blacklegged tick (Ixodes scapularis), the primary North American vector of the causative agent of Lyme disease, must attach to a host by the end of its questing season in order to feed and subsequently molt into an adult. The proper timing of this behavior is critical both for the tick’s survival and for perpetuating the transmission of tick-borne pathogens. Questing also depletes limited nymphal lipid reserves and increases desiccation risk. Given this tradeoff, questing behavior and its environmental influences can be expressed in a dynamic state variable model. We develop what we believe to be the first such model for a tick, and investigate the influence of climate on nymph fitness predictions. We apply these results to the hypothesized inland migration of I. scapularis from island refugia, evaluating fitness under suboptimal questing strategies and uncertain environmental conditions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.