Abstract

PurposeClimate data, including historical climate observations and climate model outputs, are often used in climate impact assessments, to explore potential climate futures. However, characteristics often associated with “islandness”, such as smallness, land boundedness and isolation, may mean that climate impact assessment methods applied at broader scales cannot simply be downscaled to island settings. This paper aims to discuss information needs and the limitations of climate models and datasets in the context of small islands and explores how such challenges might be addressed.Design/methodology/approachReviewing existing literature, this paper explores challenges of islandness in top-down, model-led climate impact assessment and bottom-up, vulnerability-led approaches. It examines how alternative forms of knowledge production can play a role in validating models and in guiding adaptation actions at the local level and highlights decision-making techniques that can support adaptation even when data is uncertain.FindingsSmall island topography is often too detailed for global or even regional climate models to resolve, but equally, local meteorological station data may be absent or uncertain, particularly in island peripheries. However, rather than viewing the issue as decision-making with big data at the regional/global scale versus with little or no data at the small island scale, a more productive discourse can emerge by conceptualising strategies of decision-making with unconventional types of data.Originality/valueThis paper provides a critical overview and synthesis of issues relating to climate models, data sets and impact assessment methods as they pertain to islands, which can benefit decision makers and other end-users of climate data in island communities.

Highlights

  • It is widely recognised that Small Island Developing States (SIDS) are among the most vulnerable to the effects of climate change (Betzold, 2015; Wang et al, 2016)

  • While smallness and land boundedness pose the technical challenge to climate modelling, the isolation and fragmentation of islands are associated with further knowledge gaps relating to observed environmental and vulnerability data, leading to a sub-optimal decision-making basis for managing climate risk, if we rely on conventional data sources alone

  • It examines the role that alternative forms of knowledge production can play in validating models, where they can match the scale of island decision-making and in guiding adaptation actions at the local level and highlights decision-making techniques that can support adaptation even when data is uncertain

Read more

Summary

Introduction

It is widely recognised that Small Island Developing States (SIDS) are among the most vulnerable to the effects of climate change (Betzold, 2015; Wang et al, 2016). While smallness and land boundedness pose the technical challenge to climate modelling, the isolation and fragmentation of islands are associated with further knowledge gaps relating to observed environmental and vulnerability data, leading to a sub-optimal decision-making basis for managing climate risk, if we rely on conventional data sources alone. This paper explores these challenges of islandness in both top-down, model-led forms of climate impact assessment and bottom-up, vulnerability-led approaches. It examines the role that alternative forms of knowledge production can play in validating models, where they can match the scale of island decision-making and in guiding adaptation actions at the local level and highlights decision-making techniques that can support adaptation even when data is uncertain

Perceptions of climate risk in Small Island Developing States
Addressing the scale mismatch
Conclusions
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.