Abstract

Abstract. The Southern Hemisphere Westerlies (SHW) play a crucial role in large-scale ocean circulation and global carbon cycling. Accordingly, the reconstruction of how the latitudinal position and intensity of the SHW belt changed during the last glacial termination is essential for understanding global climatic fluctuations. The southernmost part of the South American continent is the only continental mass intersecting a large part of the SHW belt. However, due to the scarcity of suitable palaeoclimate archives continuous proxy records back to the last glacial are rare in southern Patagonia. Here, we show an oxygen isotope record from cellulose and purified bulk organic matter of submerged aquatic moss shoots from Laguna Potrok Aike (52° S, 70° W), a deep maar lake located in semi-arid, extra-Andean Patagonia, covering the last glacial–interglacial transition (26 000 to 8500 cal BP). Based on the highly significant correlation between oxygen isotope values of modern aquatic mosses and their host waters and abundant well-preserved moss remains in the sediment record a high-resolution reconstruction of the lake water oxygen isotope (δ18Olw-corr) composition is presented. The reconstructed δ18Olw-corr values for the last glacial are ca. 3‰ lower than modern values, which can best be explained by generally cooler air temperatures and changes in the moisture source area, together with the occurrence of permafrost leading to a prolonged lake water residence time. Thus, the overall glacial δ18Olw-corr level until 21 000 cal BP is consistent with a scenario of weakened or absent SHW at 52° S compared to the present. During the last deglaciation, reconstructed δ18Olw-corr values reveal a significant two-step rise describing the detailed response of the lake's hydrological balance to this fundamental climatic shift. Rapid warming is seen as the cause of the first rise of ca. 2&permil, in δ18Olw-corr during the first two millennia of deglaciation (17 600 to 15 600 cal BP) owing to more 18O enriched precipitation and increasing temperature-induced evaporation. Following this interpretation, an early strengthening of the SHW would not be necessary. The subsequent decrease in δ18Olw-corr by up to 0.7‰ marks a millennial-scale transition period between 15 600 and 14 600 cal BP interpreted as the transition from a system driven by temperature-induced evaporation to a system more dominated by wind-induced evaporation. The δ18Olw-corr record resumes its pronounced increase around 14 600 cal BP. This further cumulative enrichment in 18O of lake water could be interpreted as response to strengthened wind-driven evaporation as induced by the intensification and establishment of the SHW at the latitude of Laguna Potrok Aike (52° S) since 14 600 cal BP. δ18Olw-corr approaching modern values around 8500 cal BP reflect that the SHW exerted their full influence on the lake water balance at that time provoking a prevailing more arid steppe climate in the Laguna Potrok Aike region.

Highlights

  • Studying the climate evolution from the last glacial towards the current interglacial enables us to better understand the responses of the climate system to external and internal forcing without anthropogenic impacts

  • The δ18Olw−corr record resumes its pronounced increase around 14 600 cal BP. This further cumulative enrichment in 18O of lake water could be interpreted as response to strengthened wind-driven evaporation as induced by the intensification and establishment of the Southern Hemisphere Westerlies (SHW) at the latitude of Laguna Potrok Aike (52◦ S) since 14 600 cal BP. δ18Olw−corr approaching modern values around 8500 cal BP reflect that the SHW exerted their full influence on the lake

  • The C / O ratios of subfossil bulk moss organic matter (OM), moss cellulose and residue cellulose have mean values of 1.17 (±0.05, n = 362), 0.88 (±0.02, n = 144) and 0.90 (±0.02, n = 185), respectively. These values are consistent with the mean value of 1.17 determined for bulk OM of modern aquatic moss samples and the stoichiometrically expected C / O ratio of 0.90 for cellulose (Wissel et al, 2008; Zhu et al, 2014), which confirms the purity of extracted cellulose and good preservation of moss remains in Laguna Potrok Aike sediments

Read more

Summary

Introduction

Studying the climate evolution from the last glacial towards the current interglacial enables us to better understand the responses of the climate system to external and internal forcing without anthropogenic impacts. Palaeoclimatic sites in southern South America (Patagonia) play an important role for climate reconstructions, as Patagonia is the only continental mass intersecting the core of the Southern Hemisphere Westerlies (SHW). The SHW control large-scale ocean ventilation and carbon cycling and could have played a decisive role in driving the global deglacial warming during the last glacial termination (Toggweiler et al, 2006; Anderson et al, 2009; Denton et al, 2010; Mayr et al, 2013). Reconstructing the position and intensity of the SHW during the last glacial–interglacial transition is limited, because the Andean area of southern Patagonia, where most palaeoclimate sites are located, was covered by the Patagonian Ice Sheet during the Last Glacial Maximum (LGM). The scarcity of long and continuous terrestrial records in these southern latitudes leaves a gap for linking Antarctic ice cores with low southern latitude and Northern Hemispheric records

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call