Abstract

Numerical climate models are complex and combine a large number of physical processes. They are key tools in quantifying the relative contribution of potential anthropogenic causes (e.g., the current increase in greenhouse gases) on high-impact atmospheric variables like heavy rainfall. These so-called climate extreme event attribution problems are particularly challenging in a multivariate context, that is, when the atmospheric variables are measured on a possibly high-dimensional grid. In this paper we leverage two statistical theories to assess causality in the context of multivariate extreme event attribution. As we consider an event to be extreme when at least one of the components of the vector of interest is large, extreme-value theory justifies, in an asymptotical sense, a multivariate generalized Pareto distribution to model joint extremes. Under this class of distributions, we derive and study probabilities of necessary and sufficient causation as defined by the counterfactual theory of Pearl. To increase causal evidence, we propose a dimension reduction strategy based on the optimal linear projection that maximizes such causation probabilities. Our approach is tested on simulated examples and applied to weekly winter maxima precipitation outputs of the French CNRM from the recent CMIP6 experiment.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.