Abstract

In this work we analyze potential environmental drivers of malaria cases in Northwestern Argentina. We inspect causal links between malaria and climatic variables by means of the convergent cross mapping technique, which provides a causality criterion from the theory of dynamic systems. Analysis is based on 12 years of weekly malaria P. vivax cases in Tartagal, Salta, Argentina—at the southern fringe of malaria incidence in the Americas—together with humidity and temperature time-series spanning the same period. Our results show that there are causal links between malaria cases and both maximum temperature, with a delay of five weeks, and minimum temperature, with delays of zero and twenty two weeks. Humidity is also a driver of malaria cases, with thirteen weeks delay between cause and effect. Furthermore we also determined the sign and strength of the effects. Temperature has always a positive non-linear effect on cases, with maximum temperature effects more pronounced above 25°C and minimum above 17°C, while effects of humidity are more intricate: maximum humidity above 85% has a negative effect, whereas minimum humidity has a positive effect on cases. These results might be signaling processes operating at short (below 5 weeks) and long (over 12 weeks) time delays, corresponding to effects related to parasite cycle and mosquito population dynamics respectively. The non-linearities found for the strength of the effect of temperature on malaria cases make warmer areas more prone to higher increases in the disease incidence. Moreover, our results indicate that an increase of extreme weather events could enhance the risks of malaria spreading and re-emergence beyond the current distribution. Both situations, warmer climate and increase of extreme events, will be remarkably increased by the end of the century in this hot spot of climate change.

Highlights

  • Dynamics of malaria epidemics are strongly influenced by climate [1,2,3]

  • We established causal links between humidity and temperature, and malaria cases. We found that these effects lag the causal variable by periods compatible with some key biological components of malaria transmission

  • Temperature may affect malaria cases with a delay, which we address by performing the Convergent cross-mapping (CCM) with increasing time lags between number of cases and temperature, and finding the delay with maximum prediction skill [31]

Read more

Summary

Introduction

Dynamics of malaria epidemics are strongly influenced by climate [1,2,3]. In particular, at the geographical fringes of its distribution, malaria dynamics are driven by environmental factors such as temperature, rainfall, and humidity [4], as well as epidemiological ones, such as immunity [5, 6]. In a high CO2 emission scenario, Northwestern Argentina, the studied region, will likely suffer a high temperature increase by the end of the XXI century, and the frequency of heat waves and intense rains will increase [7, 8] All of these may impact parasite transmission rates [9], since they are modulated by mosquito vector abundance, and parasite survival and development, both strongly affected by climate. At the frontiers of malaria incidence, climatic factors fluctuate between values that curb malaria transmission and values that support it This opens up the possibility of studying in situ the effects of climate on the disease dynamics

Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.