Abstract

Efficient water transport is crucial for plant growth and survival. Plant hydraulic conductivity varies between functional groups and biomes and is strongly influenced by changing environmental conditions. However, correlations of conductivity-related hydraulic traits with climatic variables are not fully understood, preventing clarification of plant form and function under climate change scenarios. By compiling leaf-specific hydraulic conductivity (KL), sapwood-specific hydraulic conductivity (Ks), and Huber values (Hv, sapwood area to leaf area ratio) along with climatic variables including mean annual temperature (MAT), mean annual precipitation (MAP) and aridity index (AI) for 428 species across a wide range of plant functional types (PFTs) and biomes at a global scale, we found greater variability of KL within PFTs and biomes than across PFTs and biomes. Interaction effects between PFTs and biomes on KL and Ks were found. The interaction between MAT and MAP played a significant role in Ks and Hv (t = 3.89, P < 0.001 for Ks and t = -5.77, P < 0.001 for Hv). With increasing AI, Ks increased and Hv decreased. KL was not influenced by the investigated climatic variables. Our study provides a better understanding of the dynamics of hydraulic structure and function across functional groups and biomes and of the abiotic drivers of their large-scale variations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.