Abstract
Understanding how and why assemblage dissimilarity changes along spatial gradient is a great challenge in ecology, because answers to these questions depend on the analytical types, dimensions, and components of beta diversity we concerned. To obtain a comprehensive understanding of assemblage dissimilarity and its implications for biodiversity conservation in the Himalayas, we explored the elevational patterns and determinants of beta diversity and its turnover and nestedness components of pairwise and multiple types and taxonomic and phylogenetic dimensions simultaneously. Patterns of beta diversity and their components of different types and dimensions were calculated based on 96 sampling quadrats along an 1800−5400 m elevational gradient. We examined whether and how these patterns differed from random expectations using null models. Furthermore, we used random forest methods to quantify the role of environmental variables representing climate, topography, and human disturbance in determining these patterns. We found that beta diversity and its turnover component, regardless of its types and dimensions, shown a hump-shaped elevational patterns. Both pairwise and multiple phylogenetic beta diversity were remarkably lower than their taxonomic counterpart. These patterns were significantly less than random expectation and were mostly associated with climate variables. In summary, our results suggested that assemblage dissimilarity of seed plants was mostly originate from the replacement of closely related species determined by climate-driven environmental filtering. Accordingly, conservation efforts should better cover elevations with different climate types to maximalize biodiversity conservation, rather than only focus on elevations with highest species richness. Our study demonstrated that comparisons of beta diversity of different types, dimensions, and components could be conductive to consensus on the origin and mechanism of assemblage dissimilarity.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.