Abstract

Understanding runoff dynamics is vital for effective water management in climate-affected areas. This study focuses on the Dayekou basin in China’s Qilian Mountains, known for their high climate variability. Using 25 years of data (1994–2018) on river runoff, precipitation, and temperature, statistical methods were applied to explore the annual variations and climate change impacts on these parameters. Results reveal a significant variability in the river runoff (132.27 to 225.03 mm), precipitation (340.19 to 433.29 mm), and average temperature (1.38 to 2.08 °C) over the period. Decadal rising rates average 17 mm for runoff, 17 mm for precipitation, and 0.25 °C for temperature, with the peak precipitation and runoff occurring in 1998–2000, 2008, and 2016. The annual runoff distribution also exhibited a unimodal pattern, peaking at 39.68 mm in July. The cumulative runoff during low periods constituted only 13.84% of the annual total, concentrated in the second half of the year, particularly during the June-October flood season. The correlation analysis underscored a strong relationship between river runoff and precipitation (correlation coefficient > 0.80), while the temperature correlation was weaker (correlation coefficient < 0.80). This 25-year analysis provides valuable insights into runoff variation, elucidating the interconnected effects of temperature and precipitation in the Dayekou basin, with substantial implications for sustainable development amid climate challenges.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.