Abstract
The soil surface of drylands can typically be colonized by cyanobacteria and other microbes, forming biological soil crusts or 'biocrusts'. Biocrusts provide critical benefits to ecosystems and are a common component of the largely arid and semi-arid Australian continent. Yet, their distribution and the parameters that shape their microbial composition have not been investigated. We present here the first detailed description of Australia's biocrust microbiome assessed from 15 sites across the continent using 16S rRNA sequencing. The most abundant bacterial phyla from all sites were Cyanobacteria, Proteobacteria, Actinobacteria, Chloroflexi and Bacteroidetes. Cyanobacterial communities from northern regions were more diverse and unclassified cyanobacteria were a noticeable feature of northern biocrusts. Segregation between northern and southern regions was largely due to the differential abundance of Microcoleus spp., with M. paludosus dominating in the north and M. vaginatus dominating in the south. The geographical shifts in bacterial composition and diversity were correlated to seasonal temperatures and summer rainfall. Our findings provide an initial reference for sampling strategies to maximize access to bacterial genetic diversity. As hubs for essential ecosystem services, further investigation into biocrusts in arid and semi-arid regions may yield discoveries of genetic mechanisms that combat increases in warming due to climate change.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.