Abstract

AbstractThe application of a distributed energy balance model over nine years at an hourly time step to a 20 × 20 m grid cell over Glacier Zongo (Bolivia, 16°S) enabled assessment of the climate factors that control the interseasonal and interannual variability of its surface mass balance. The model was validated by comparing the measured and simulated discharge at the outlet, albedo at the Automatic Weather Station, surface state and annual mass balance both glacier‐wide and as a function of altitude. Analysis of the mean monthly energy fluxes highlighted the importance of the meteorological conditions over October and November on the variability of the annual surface mass balance. Two sensitivity analyses are presented, one of the distribution of precipitation over time which maintains a physical coherence between the different meteorological variables and one of the impact of prolonged periods of intense cloud radiative forcing on the surface mass balance. The distribution of precipitation events over time and their associated amounts are the main drivers of the interannual variability of the surface mass balance via an albedo feedback effect. Additionally, prolonged periods of negative cloud radiative forcing, specifically over the month of November, notably reduce the melt rate.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call