Abstract
The design and conduct of climate change policy necessarily confronts uncertainty along multiple fronts. We explore the consequences of ambiguity over various sources and configurations of models that impact how economic opportunities could be damaged in the future. We appeal to decision theory under risk, model ambiguity and misspecification concerns to provide an economically motivated approach to uncertainty quantification. We show how this approach reduces the many facets of uncertainty into a low dimensional characterization that depends on the uncertainty aversion of a decision-maker or fictitious social planner. In our computations, we take inventory of three alternative channels of uncertainty and provide a novel way to assess them. These include i) carbon dynamics that capture how carbon emissions impact atmospheric carbon in future time periods; ii) temperature dynamics that depict how atmospheric carbon alters temperature in future time periods; iii) damage functions that quantify how temperature changes diminish economic opportunities. We appeal to geoscientific modeling to quantify the first two channels. We show how these uncertainty sources interact for a social planner looking to design a prudent approach to the social pricing of carbon emissions. Institutional subscribers to the NBER working paper series, and residents of developing countries may download this paper without additional charge at www.nber.org.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.