Abstract

The pine caterpillar (Dendrolimus spectabilis Bulter, Lepidoptera: Lasiocampidae), as an ectotherm, temperature plays a crucial role in its development. With climate change, earlier development of insect pests is expected to pose a more frequent threat to forest communities. Yet the quantitative research about the extent to which global warming affects pine caterpillar populations is rarely understood, particularly across various elevations and latitudes. Spring phenology of pine caterpillars showed an advancing trend with 0.8 d/10a, 2.2 d/10a, 2.2 d/10a, and 3.3 d/10a under the SSP1-2.6, SSP2-4.5, SSP3-7.0 and SSP5-8.5 scenario, respectively. There was a maximum advance of 20 d in spring phenology of pine caterpillars during the 2090s, from mid-March to early March, and even late February. This study highlighted the significant advance in spring phenology at elevations >1000 m and lower latitudes. Consequently, the differences in elevational and latitudinal gradients were relatively small as the increasing temperatures at the end of the 21st century. And the average temperature in February–March was effective in explaining theses variability. These findings are crucial for adapting and mitigating to climate change.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.