Abstract
There is a very high uncertainty in the future climate change in the Himalayas and few studies has been carried out towards predicting future climate scenario in the Nepal Himalayas. In this study, climate change projection has been carried out for the Marsyangdi River Basin in the Nepal Himalaya which is focused on quantifying impacts of climate change with meteorological parameters (temperature and precipitation) for the future period, based on the outputs from fifth assessment report of Intergovernmental Panel on Climate Change. The study makes use of CanESM2 dataset which are statistically downscaled using statistical downscaling model (SDSM). Climate projections are available for three representative concentration pathways (RCPs) namely RCP 2.6, RCP 4.5 and RCP 8.5 for up to 2100. The study revealed that both the temperature and precipitation will increase for three RCPs in future. Compared to the baseline period, the annual average of maximum temperature has been projected to increase by 0.82 °C, 1.35 °C and 2.29 °C by 2090s, while, annual average of minimum temperature has been projected to increase by 0.87 °C, 1.44 °C and 2.43 °C by 2090s for RCP 2.6, RCP 4.5 and RCP 8.5 respectively. Similarly, annual average precipitation has been projected to increase by 4, 14 and 21 % by 2090s for RCP 2.6, RCP 4.5 and RCP 8.5 respectively. The projected percentage increase in annual precipitation has been found to have inverse relationship with the elevation. The study suggests that climate change is evident in the study area and these findings will be useful in climate change impact assessment in different sectors such as geodisasters and future management strategies in the Marsyangdi River Basin.
Highlights
There is a very high uncertainty in the future climate change in the Himalayas and few studies has been carried out towards predicting future climate scenario in the Nepal Himalayas
It is a climate simulation performed within the framework of Climate Model Inter-comparison Project Phase 5 (CMIP 5) which contributes to the fifth assessment report of the intergovernmental panel on climate change (IPCC)
The results show that for representative concentration pathway (RCP) 4.5 and RCP 8.5, both maximum and minimum temperature will continue to rise in future while for RCP 2.6, temperature will increase up to 2060s and slightly decrease afterwards
Summary
The study revealed that both the temperature and precipitation will increase for three RCPs in future. Compared to the baseline period, the annual average of maximum temperature has been projected to increase by 0.82 °C, 1.35 °C and 2.29 °C by 2090s, while, annual average of minimum temperature has been projected to increase by 0.87 °C, 1.44 °C and 2.43 °C by 2090s for RCP 2.6, RCP 4.5 and RCP 8.5 respectively. Annual average precipitation has been projected to increase by 4, 14 and 21 % by 2090s for RCP 2.6, RCP 4.5 and RCP 8.5 respectively. The projected percentage increase in annual precipitation has been found to have inverse relationship with the elevation
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.