Abstract

Climate change is expected to impact all aspects of marine ecosystems, including fisheries. Here, we use output from a suite of 11 earth system models to examine projected changes in two ecosystem-defining variables: temperature and food availability. In particular, we examine projected changes in epipelagic temperature and, as a proxy for food availability, zooplankton density. We find that under RCP8.5, a high business-as-usual greenhouse gas scenario, increasing temperatures may alter the spatial distribution of tuna and billfish species richness across the North Pacific basin. Furthermore, warmer waters and declining zooplankton densities may act together to lower carrying capacity for commercially valuable fish by 2-5% per decade over the 21st century. These changes have the potential to significantly impact the magnitude, composition, and distribution of commercial fish catch across the pelagic North Pacific. Such changes will in turn ultimately impact commercial fisheries' economic value. Fishery managers should anticipate these climate impacts to ensure sustainable fishery yields and livelihoods.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.