Abstract

The influences of climate change on the features of extreme rainfall events have become unprecedented that needs improved understanding at all levels for planning effective management strategies of the potential risks. This study aims to assess the potential influences of climate change on extreme rainfall characteristics in flood-vulnerable city of Adama. Daily precipitation records of 1967-2016 and projection of global circulation models (GCMs): CanESM2 and HadCM3 for 2021-2070 were disaggregated into shorter time resolutions using the Hyetos model. Gumbel type I probability distribution and power-regression model ([Formula: see text] were used for deducing intensity-duration-frequency (IDF) curves and for describing their functions, respectively. The extreme rainfall intensity of the historical and future periods for a range of storm durations and return periods were compared and contrasted. A close agreement is obtained between the observed and the modeled rainfall intensity with high values of coefficient of determination (> 0.996) and Nash-Sutcliffe efficiency (> 0.850). Besides, statistically significant (p < 0.05) direct linear relationship is found between the return periods and the coefficient parameter of the IDF models. Moreover, the intensity of extreme precipitation over 2021-2070 in Adama city would increase up to 49.5%, depending on storm duration and return period considered. This could have consequences of the way the city's drainage infrastructures are designed, operated, and sustained. Hence, flood-prone areas should be recognized in order to formulate effective strategies for mitigation and adaption of potential impacts. The standards for designing future drainage infrastructures should also be updated aiming to reflect the effects of climatic change.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call