Abstract

Buildings contribute significantly to climate change, accounting for 20 % of greenhouse gas emissions and over 40 % of global primary energy consumption. As the world's population grows and living standards rise, building energy use rises. Climate change is expected to impact interior environments, leading to uncertainty in analyzing energy and thermal usage of existing structures. Among the effects of climate change is a temperature increase that affects the indoor climate. Understanding future climate scenarios and their impacts can enhance the adaptability of existing buildings. The article extensively analyzed how climate change affects the energy usage of housing developments to address this problem. This study aims to determine the thermal behavior of existing buildings in Jordan in present and future timeframes, considering the effect of different orientation scenarios. Using Design Builder software, a family's home located in a Hot Semi-Arid Climate zone presented by Amman City is modeled, and its internal circumstances are documented for the current climate and the next 40–70 years' predictions. Larger homes will see higher fluctuations in their energy load than smaller homes. Based on Köppen climate classification of the present and future times, the findings indicate that by 2100, mechanical cooling will be needed most of the time. Even with suggested tactics, the structure will not be pleasant without conditioning. The research indicates that the climate zones in Amman city are expected to shift from their current classification to arid zones with two distinct thermal regions, according to the climate maps provided. This transition is predicted to increase cooling loads significantly, rising from 2544.90 kWh/year to 4076.34 kWh/year, while heating loads are predicted to decrease from 4197.56 kWh/year to 3719.15 kWh/year. Moreover, the outcomes of the orientation scenarios analysis are that the total electrical loads in the present and future timeframes were at their lowest values when the building was oriented 180° counterclockwise, while the building recorded the highest value in its baseline orientation scenario.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.