Abstract

The increasing intensity and frequency of rainfall events, a critical aspect of climate change, pose significant challenges in the construction of intensity–duration–frequency (IDF) curves for climate projection. These curves are crucial for infrastructure development, but the non-stationarity of extreme rainfall raises concerns about their adequacy under future climate conditions. This research addresses these challenges by investigating the reasons behind the IPCC climate report’s evidence about the validity that rainfall follows the Clausius-Clapeyron (CC) relationship, which suggests a 7% increase in precipitation per 1 °C increase in temperature. Our study provides guidelines for adjusting IDF curves in the future, considering both current and future climates. We calculate extreme precipitation changes and scaling factors for small urban catchments in Barranquilla, Colombia, a tropical region, using the bootstrapping method. This reveals the occurrence of a sub-CC relationship, suggesting that the generalized 7% figure may not be universally applicable. In contrast, our comparative analysis with Illinois, USA, an inland city in the north temperate zone, shows adherence to the CC relationship. This emphasizes the need for local parameter calculations rather than relying solely on the generalized 7% figure.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call