Abstract

AbstractAimProject shifts in the habitat suitability of 505 fish and invertebrate species in the Eastern Tropical Pacific that are likely to occur by the mid‐21st century under “high greenhouse gas emissions” (RCP 8.5) and “strong mitigation” (RCP 2.6) scenarios.LocationThe Eastern Tropical Pacific Ocean, a discrete biogeographic region from the Gulf of California to northern Peru.MethodsEnsemble simulations of climate change effects on fish and invertebrate species caught by four major fisheries in the region, based on four species distribution models and three Earth system models.ResultsSimulation results indicated that species' habitat suitability increased or remained the same in the northern and southern margins of the Eastern Tropical Pacific but decreased by up to 14% in some fisheries along Central America. The largest declines in the average species habitat suitability index were projected for small pelagic fisheries (up to −46%), while the highest local species turnover was projected for coastal small‐scale fisheries (up to 80%). Under RCP 8.5, species in the southern half and northern equatorial region of the Eastern Tropical Pacific were projected to shift south‐east at a rate of approximately 30–60 km decade‐1, respectively. Demersal species were projected to move into shallower, inshore waters with a shift in depth centroids estimated at a rate of around 1 to 13 m decade−1. Range shifts towards the equator reflect movements to cooler habitats that are characteristic of equatorial upwelling systems. Range shifts towards shallower, inshore waters reflect habitat compression associated with the expansion of oxygen minimum zones.Main conclusionsOur findings highlight the importance of local‐scale oceanographic and biological data to elucidate the multidimensional biogeographic shifts of key species, their potential impacts on fisheries in the region and the need to consider such shifts in the design of effective conservation and marine resource management measures.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.