Abstract

Potential future impacts of climate change on irrigated rice and wheat production and their evapotranspiration and irrigation requirements in the Gomti River basin were assessed by integrating a widely used hydrological model “Soil and Water Assessment Tool (SWAT)” and climate change scenario generated from MIROC (HiRes) global climate model. SWAT model was calibrated and validated using monthly streamflow data of four spatially distributed gauging stations and district wise wheat and rice yields data for the districts located within the basin. Simulation results showed an increase in mean annual rice yield in the range of 5.5–6.7, 16.6–20.2 and 26–33.4 % during 2020s, 2050s and 2080s, respectively. Similarly, mean annual wheat yield is also likely to increase by 13.9–15.4, 23.6–25.6 and 25.2–27.9 % for the same future time periods. Evapotranspiration for both wheat and rice is projected to increase in the range of 3–9.6 and 7.8–16.3 %, respectively. With increase in rainfall during rice growing season, irrigation water allocation for rice is likely to decrease (<5 %) in future periods, but irrigation water allocation for wheat is likely to increase by 17.0–45.3 % in future periods.

Highlights

  • Global food security threatened by climate change is one of the serious challenges in the twenty-first century to supply sufficient food for the burgeoning population while sustaining the already stressed environment

  • In Soil and Water Assessment Tool (SWAT), the watershed is divided into a number of sub-watersheds that are further subdivided into hydrologic response units (HRUs) based on unique soil, slope and land-use characteristics

  • The most sensitive factors considered for calibration and validation are: Base flow alpha factor (ALPHA_BF), available water capacity (SOL_AWC), plant uptake compensation factor (EPCO), delay of time for aquifer recharge

Read more

Summary

Introduction

Global food security threatened by climate change is one of the serious challenges in the twenty-first century to supply sufficient food for the burgeoning population while sustaining the already stressed environment. Changes in temperature and precipitation due to global climate change may have serious impacts on hydrologic processes, water resources availability, irrigation water demand, and thereby affecting the agricultural production and productivity. Climate variability is one of the most significant factors influencing year to year crop production, even in high yielding and high-technology agricultural areas (Kang et al 2009). Agricultural productivity is sensitive to climate change due to direct effects of changes in temperature, precipitation and carbon dioxide concentrations, and due to indirect effects through changes in soil moisture and the distribution and frequency of infestation by pests and diseases (Mendelsohn 2014).

Objectives
Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call