Abstract

Agricultural system models provide an effective tool for forecasting crop productivity and nutrient budgets under future climate change. This study investigates the potential impacts of climate change on crop failure, grain yield and soil organic carbon (SOC) for both winter wheat (Triticum aestivum L.) and maize (Zea mays L.) in northern China, using the SPACSYS model. The model was calibrated and validated with datasets from 20-year long-term experiments (1985–2004) for the Loess plateau, and then used to forecast production (2020–2049) under six sharing social-economic pathway climate scenarios for both wheat and maize crops with irrigation. Results suggested that warmer climatic scenarios might be favourable for reducing the crop failure rate and increasing the grain yield for winter wheat, while the same climatic scenarios were unfavourable for maize production in the region. Furthermore, future SOC stocks in the topsoil layer (0–30 cm) could increase but in the subsoil layer (30–100 cm) could decrease, regardless of the chosen crop.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call