Abstract

In highly seasonal systems, the emergence of planktonic resting stages from the sediment is a key driver for bloom timing and plankton community composition. The termination of the resting phase is often linked to environmental cues, but the extent to which recruitment of resting stages is affected by climate change remains largely unknown for coastal environments. Here we investigate phyto- and zooplankton recruitment from oxic sediments in the Baltic Sea in a controlled experiment under proposed temperature and light increase during the spring and summer. We find that emergence of resting stage differs between seasons and the abiotic environment. Phytoplankton recruitment from resting stages were high in spring with significantly higher emergence rates at increased temperature and light levels for dinoflagellate and cyanobacteria than for diatoms, which had highest emergence under cold and dark conditions. In comparison, hatching of copepod nauplii was not affected by increased temperature and light levels. These results show that activation of plankton resting stages are affected to different degrees by increasing temperature and light levels, indicating that climate change affects plankton dynamics through processes related to resting stage termination with potential consequences for bloom timing, community composition and trophic mismatch.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.