Abstract

Climate change threatens freshwater fish species due to predicted changes in thermal, sedimentary and hydrological properties of stream ecosystems. Gravel-spawning fish are particularly sensitive to such alterations as warming, higher inputs of fine sediment and low-flow all have potentially negative effects on the functionality of their reproductive habitat, the hyporheic zone. Multiple stressors can interact in synergistic and antagonistic manners, causing surprise-effects that cannot be predicted from the additive consideration of individual stressors. For obtaining reliable, yet realistic data on the climate change stressor effects warming (+3–4 °C), fine sediment (increase in <0.85 mm by 22 %) and low-flow (eightfold discharge-reduction), we constructed a unique large-scale outdoor-mesocosm facility consisting of 24 flumes to study individual and combined stressor responses in a fully-crossed, 3-way-replicated design. To acquire representative results reflecting individual susceptibilities of gravel-spawning fish species due to taxonomic affiliation or spawning seasonality, we studied hatching success and embryonic development in the three fish species brown trout (Salmo trutta L.), common nase (Chondrostoma nasus L.) and Danube salmon (Hucho hucho L.). Fine sediment had the most significant single negative effect on both hatching rates and embryonic development (−80 % in brown trout, −50 % in nase, −60 % in Danube salmon). When fine sediment was combined with one or both of the other stressors, we observed strongly synergistic stressor responses, being distinctly stronger in the two salmonid species than in the cyprinid nase. Danube salmon was most susceptible to synergistic effects due to warmer spring water temperatures exacerbating the fine sediment-induced hypoxia, hence leading to complete mortality of fish eggs. This study highlights that individual and multiple-stressor effects depend strongly on life-history traits of respective species and that climate change stressors have to be assessed in combination to obtain representative results due to the high level of synergisms and antagonisms detected in this study.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call