Abstract

Using a 25-year record of monitoring data, we show that recent climate change has affected the thermal properties and oxygen content of seven lakes in south-central Ontario, Canada, and five lakes in north-central Wisconsin, USA. Coherent patterns in autumnal lake warming were driven by increased autumn air temperature in both lake districts. Temperature increases were restricted to the epilimnion and metalimnion of the lakes, resulting in increased thermal stability of the water column. Mixing depths also decreased over the study period. Shallower mixing depths in the Ontario lakes were due to climate-driven increases in lake-water dissolved organic carbon concentrations. Collectively, changes in the thermal regime of the lakes suggest autumn mixing of the water column may be delayed. Metalimnetic oxygen also increased in the Wisconsin lakes, perhaps in response to increased algal production as lake thermal regimes changed. The response of individual lakes to climate change was modified by lake chemistry in the Ontario lake district and by lake chemistry and morphometry in the Wisconsin lake district. Our results demonstrate coherent lake response to climate change and highlight the importance of both regional and local factors in regulating individual lake response to global climate change.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.