Abstract

The growth of past, present, and future forests was, is and will be affected by climate variability. This multifaceted relationship has been assessed in several regional studies, but spatially resolved, large-scale analyses are largely missing so far. Here we estimate recent changes in growth of 5800 beech trees (Fagus sylvatica L.) from 324 sites, representing the full geographic and climatic range of species. Future growth trends were predicted considering state-of-the-art climate scenarios. The validated models indicate growth declines across large region of the distribution in recent decades, and project severe future growth declines ranging from −20% to more than −50% by 2090, depending on the region and climate change scenario (i.e. CMIP6 SSP1-2.6 and SSP5-8.5). Forecasted forest productivity losses are most striking towards the southern distribution limit of Fagus sylvatica, in regions where persisting atmospheric high-pressure systems are expected to increase drought severity. The projected 21st century growth changes across Europe indicate serious ecological and economic consequences that require immediate forest adaptation.

Highlights

  • The tree-ring community has developed international dendrochronological databanks, yet these are typically biased or limited for certain taxa, biomes and trailing-edge populations[11–13], hindering their value for ecologically-focused application. If such challenges can be overcome, the large spatial scale represented by tree-ring networks, their annual resolution and the potential for multi-decade assessment of growth changes present a unique opportunity to unravel spatial patterns and drivers of recent growth, and predict future growth dynamics based on climate change scenarios

  • Growth declines are severe towards the southern distribution limits in Europe, and these general trends will continue as the climate continues to warm and become drier

  • Analysing the drivers of growth across an unprecedented network of beech sites covering Europe, we report a pervasive growth rate decline from 1955 to 2016. This decline is widespread in Europe, except for sites located towards the northern distribution range in Denmark, Norway and Sweden and at higher elevation in mountain regions

Read more

Summary

Introduction

The growth of past, present, and future forests was, is and will be affected by climate variability. The tree-ring community has developed international dendrochronological databanks, yet these are typically biased or limited for certain taxa, biomes and trailing-edge populations[11–13], hindering their value for ecologically-focused application If such challenges can be overcome, the large spatial scale represented by tree-ring networks, their annual resolution and the potential for multi-decade assessment of growth changes present a unique opportunity to unravel spatial patterns and drivers of recent growth, and predict future growth dynamics based on climate change scenarios. Such information would be crucial to estimate species resilience to warmer and potentially drier future conditions. We established a dense and species-specific network supportive of comparative ecological analyses, covering the entire ecological spectrum of Fagus sylvatica L. (hereafter beech), including over 780,000 ring width measurements from 5800 trees and 324 sampling sites across Europe (Fig. 1)

Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call