Abstract

Climate change is becoming one of the main threats to fishery resources, with the attendant possibilities of decreasing income and food security. Sea surface temperature (SST) is considered a major environmental indicator of climate change, one that impacts the marine ecosystem and habitat. Studying the impacts of SST changes necessitates regular effective monitoring; remote sensing techniques provide researchers with the ability to track changes on various spatial and temporal scales. This study provides an integrated approach, using the advantages of remote sensing data and GIS tools, to assess the SST changes in the spatial potential aggregation zones of Plectropomus pessuliferus marisrubri and Plectropomus areolatus along the Red Sea’s Saudi coast. This study used SST satellite data for 2011 and 2021 to detect changes and develop suitability and risk assessment maps. The SST showed an increase of 0.46 °C from 2011 to 2021, particularly during the summer months. As a result, the suitability of spatial potential aggregation from 2011 to 2021 has dropped in the summer months. The risk assessment analysis revealed a decrease in the suitable potential aggregation zones in the summer months, as it reached about −35.7% in August, while it increased in the winter months, reaching +2.52% in January.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call