Abstract
Agricultural sectors play a key role in the economics of climate change. Land as an input to agricultural production is one of the most important links between economy and the biosphere, representing a direct projection of human action on the natural environment. Agricultural management practices and cropping patterns have a vast effect on biogeochemical cycles, freshwater availability and soil quality. Agriculture also plays an important role in emitting and storing greenhouse gases. Thus, to consistently investigate climate policy and future pathways for the economic and natural environment, a realistic representation of agricultural land-use is essential. Computable General Equilibrium (CGE) models have increasingly been used to this purpose. CGE models simulate the simultaneous equilibrium in a set of interdependent markets, and are especially suited to analyze agricultural markets from a global perspective. However, modeling agricultural sectors in CGE models is not a trivial task, mainly because of differences in temporal and geographical aggregation scales. The aim of this study is to overview some proposed modeling strategies, by reviewing the available literature and highlighting the different trade-offs involved in the various approaches.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.