Abstract

Abstract This study quantifies the potential impacts on ship-defense high-energy-laser (HEL) performance due to atmospheric effects in the marine boundary layer driven by recent observations and analysis of worldwide sea surface temperatures (SSTs). The atmospheric effects are defined using the worldwide probabilistic climatic database available in the High Energy Laser End-to-End Operational Simulation (HELEEOS) model, which includes an SST database for the period 1854–1997. A more recent worldwide sea surface temperature database was provided by the Naval Postgraduate School for the period 1990–2008. Mean differences and trends between the two SST databases are used to deduce possible climate change impacts on simulated maritime HEL engagements. The anticipated effects on HEL propagation performance are assessed at an operating wavelength of 1.0642 μm across the world’s oceans and mapped onto a 1° × 1° grid. The scenario evaluated is near surface and nearly horizontal over a range of 5000 m in which anticipated clear-air maritime aerosols occur. Summer and winter scenarios are considered. In addition to realistic vertical profiles of molecular and aerosol absorption and scattering, correlated optical turbulence profiles in probabilistic (percentile) format are used.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.