Abstract

The Tibetan Plateau (TP) is predicted to experience increases in air temperature, increases in snowfall, and decreases in monsoon rains; however, there is currently a paucity of data that examine the ecological responses to such climate changes. In this study, we examined the effects of increased air temperature and snowfall on: 1) water use partitioning by different plant functional groups, and 2) ecosystem CO2 fluxes throughout the growing season. At the individual plant scale, we used stable hydrogen isotopes (δD) to partition water use between shallow- and deep-rooted species. Prior to the arrival of summer precipitation (typically mid-July), snowmelt was the main water source in the soils. During this time, shallow and deep-rooted species partitioned water use by accessing water from shallow and deep soils, respectively. However, once the monsoon rains arrived, all plants used rainwater from the upper soils as the main water source. Snow addition did not result in increased snowmelt use throughout the growing season; instead, snowmelt water was pushed down into deeper soils when the rains arrived. At the larger plot scale, CO2 flux measurements demonstrated that rain was the main driver for net ecosystem productivity (NEP). NEP rates were low during June and July and reached a maximum during the monsoon season in August. Warming decreased NEP through a reduction in gross primary productivity (GPP), and snow additions did not mitigate the negative effects of warming by increasing NEP or GPP. Both the isotope and CO2 flux results suggest that rain drives productivity in the Nam Tso region on the TP. This also suggests that the effects of warming-induced drought on the TP may not be mitigated by increased snowfall. Further decreases in summer monsoon rains may affect ecosystem productivity, with large implications for livestock-based livelihoods.

Highlights

  • Over the past fifty years, the Tibetan Plateau (TP) has experienced climate warming at a rate of 0.25uC per decade [1]

  • Rain is the dominant precipitation type on the TP and our study found that all the plants, regardless of rooting depth, relied on rain as the main water source in the grasslands in the Nam Tso region

  • The five main conclusions of our study were: 1) summer monsoon rains originate from two sources: the East Asian Monsoon and from local convective storms, 2) plants partitioned water use pre-monsoon, but during the monsoon, all plants used mainly rain from the upper soil layers, 3) snow additions did not mitigate the effects of the warming treatments by increasing soil moisture or decreasing air and soil temperatures during peak growing season, 4) high net ecosystem productivity (NEP) rates occurred when the plants were

Read more

Summary

Introduction

Over the past fifty years, the Tibetan Plateau (TP) has experienced climate warming at a rate of 0.25uC per decade [1]. This increase is twice the mean global warming rate and has the potential to affect regional hydrology, ecosystem productivity, and shifts in species composition [2,3,4,5]. The TP receives 20% of its annual precipitation during winter and 80% during the summer. In addition to predicted increases in temperature, future climate models for this area are predicting an increase in snowstorms [3,9] and decreasing monsoon precipitation [10,11], but the impact of changes in precipitation dynamics on ecological processes, such as shifts in species composition, and nutrient and carbon dynamics remain relatively unknown

Objectives
Methods
Results
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.