Abstract

Climate change can benefit individual species, but when pest species are enhanced by warmer temperatures agricultural productivity may be placed at greater risk. We analyzed the effects of temperature anomaly on arrival date and infestation severity of potato leafhopper, Empoasca fabae Harris, a classic new world long distance migrant, and a significant pest in several agricultural crops. We compiled E. fabae arrival dates and infestation severity data at different states in USA from existing literature reviews and agricultural extension records from 1951–2012, and examined the influence of temperature anomalies at each target state or overwintering range on the date of arrival and severity of infestation. Average E. fabae arrival date at different states reveal a clear trend along the south-north axis, with earliest arrival closest to the overwintering range. E. fabae arrival has advanced by 10 days over the last 62 years. E. fabae arrived earlier in warmer years in relation to each target state level temperature anomaly (3.0 days / °C increase in temperature anomaly). Increased temperature had a significant and positive effect on the severity of infestation, and arrival date had a marginal negative effect on severity. These relationships suggest that continued warming could advance the time of E. fabae colonization and increase their impact on affected crops.

Highlights

  • Global surface temperature has increased by about 0.74°C in the 100 year period ending in 2005 [1] and the decade 2000–2009 was the warmest on record

  • We identified the best model based on both Akaike Information Criteria (AIC) and Bayesian Information Criteria (BIC) values

  • Temperature influence on arrival day linear mixed model (LMM) with temperature anomaly calculated for the target states across both winter and summer (January through June), was selected based on AIC and BIC values

Read more

Summary

Introduction

Global surface temperature has increased by about 0.74°C in the 100 year period ending in 2005 [1] and the decade 2000–2009 was the warmest on record. There is consensus that most of the observed warming is due to human release of CO2 into the atmosphere [2]. Of Agriculture Plant Hardiness Zone (the standard by which growers determine which plants are most likely to thrive at a location) map, which averages winter minimum temperatures from 1976–2005, has a modal increase of one full zone relative to the 1990 map that averages temperatures from 1976–1988 [3]. PLOS ONE | DOI:10.1371/journal.pone.0124915 May 13, 2015

Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call