Abstract

Vegetation greening has been widely occurring on the Chinese Loess Plateau, and the contributions of human land-use management have been well-understood. However, the influences of climatic change and CO2 fertilization on reported vegetation variations remain difficult to determine. Therefore, we quantified the impacts of multiple factors on vegetation changes for the Chinese Loess Plateau from 2000 to 2019 by integrating satellite-based leaf area index (LAI) and simulated LAI from dynamic global vegetation models. More than 96% of the vegetated areas of the Loess Plateau exhibited greening trends, with an annually averaged satellite-based LAI rate of 0.037 ± 0.006 m2 m−2 a−1 (P < 0.01). Human land-use management and environmental change have jointly accelerated vegetation growth, explaining 54% and 46% of the overall greening trend, respectively. CO2 fertilization and climate change explain 55% and 45% of the greening trend due to environmental change, respectively; solar radiation and precipitation were the main driving factors for climate-induced vegetation greenness (P < 0.05). Spatially, the eastern part of the Loess Plateau was dominated by CO2 fertilization, while the western part was mainly affected by climate change. Furthermore, solar radiation was the key limiting factor affecting LAI variations in the relatively humid area, while precipitation was the major influencing factor in relatively arid areas. This study highlights the important roles that climate change and CO2 fertilization have played in vegetation greenness in recent decades of the Loess Plateau, despite strong influences of anthropogenic footprint.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.