Abstract

Climate and carbon cycle are tightly coupled on many time scales, from the interannual to the multimillennial. Observation always shows a positive feedback between climate and the carbon cycle: elevated atmospheric CO2 leads to warming, but warming is expected to further release of carbon to the atmosphere, enhancing the atmospheric CO2 increase. Earth system models do represent these climate–carbon cycle feedbacks, always simulating a positive feedback over the 21st century; that is, climate change will lead to loss of carbon from the land and ocean reservoirs. These processes partially offset the increases in land and ocean carbon sinks caused by rising atmospheric CO2. As a result, more of the emitted anthropogenic CO2 will remain in the atmosphere. There is, however, a large uncertainty on the magnitude of this feedback. Recent studies now help to reduce this uncertainty. On short, interannual, time scales, El Niño years record larger-than-average atmospheric CO2 growth rate, with tropical land ecosystems being the main drivers. These climate–carbon cycle anomalies can be used as emerging constraint on the tropical land carbon response to future climate change. On a longer, centennial, time scale, the variability of atmospheric CO2 found in records of the last millennium can be used to constrain the overall global carbon cycle response to climate. These independent methods confirm that the climate–carbon cycle feedback is positive, but probably more consistent with the lower end of the comprehensive models range, excluding very large climate–carbon cycle feedbacks.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call