Abstract
Changes in the world's oceans have altered nutrient flow, and affected the viability of predator populations when prey species become unavailable. These changes are integrated into the tissues of apex predators over space and time and can be quantified using stable isotopes in the inert feathers of historical and contemporary avian specimens. We measured δ(13) C and δ(15) N values in Flesh-footed Shearwaters (Puffinus carneipes) from Western and South Australia from 1936-2011. The Flesh-footed Shearwaters more than doubled their trophic niche (from 3.91 ± 1.37 ‰(2) to 10.00 ± 1.79 ‰(2) ), and dropped an entire trophic level in 75 years (predicted δ(15) N decreased from +16.9 ‰ to + 13.5 ‰, and δ(13) C from -16.9 ‰ to -17.9 ‰) - the largest change in δ(15) N yet reported in any marine bird, suggesting a relatively rapid shift in the composition of the Indian Ocean food web, or changes in baseline δ(13) C and δ(15) N values. A stronger El Niño-Southern Oscillation results in a weaker Leeuwin Current in Western Australia, and decreased Flesh-footed Shearwater δ(13) C and δ(15) N. Current climate forecasts predict this trend to continue, leading to increased oceanic 'tropicalization' and potentially competition between Flesh-footed Shearwaters and more tropical sympatric species with expanding ranges. Flesh-footed Shearwater populations are declining, and current conservation measures aimed primarily at bycatch mitigation are not restoring populations. Widespread shifts in foraging, as shown here, may explain some of the reported decline. An improved understanding and ability to mitigate the impacts of global climactic changes is therefore critical to the long-term sustainability of this declining species.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.