Abstract

Climate change adaptation policies and strategies have inevitably become an integral component of agricultural production on a global scale. The evaluative extent to which these adaptation techniques have influenced agricultural productivity is inherently exiguous. Citrus production in tropical regions such as South Africa, is more vulnerable to climate change as the region already experience hot and dry climate, hence the need to implement different strategies for climate change adaption in these regions. This study was designed to assess the effect of adopting the following climate change adaptation measures: planting drought resistant varieties, rainwater harvesting, planting early maturing varieties, integrated pest management (IPM) , changing fertiliser type, and applying drip irrigation to manage climate challenges on the production efficiency of citrus farmers in the Limpopo province of South Africa. The stochastic frontier production function with Cobb Douglas production functional form was used to analyse the productivity of farmers’ vis-à-vis adopted climate change strategies. A survey was conducted and data were collected through a semi-structured questionnaire administered to respondents from 235 production units in the five district municipalities of Limpopo. The likelihood ratio tests for profit models showed that farmers were profit efficient considering the identified adaptation strategies. The variables that influenced profit efficiency was price of fertiliser (p < 0.010) and water cost (p < 0.010). The inefficiency model showed that besides changing fertiliser as an adaptation measure, the other adaptation strategies including IPM, water harvesting and planting drought resistant varieties did not change the profit efficiency of farmers. Therefore, the results indicate that citrus farmers can still adapt to climate change and remain profit efficient.

Highlights

  • Climate change substantially defines agricultural productivity as it influences several input balances, which support the entire agricultural system

  • The results indicate that 88.6% of the respondents sourced global climate change resources on adaptive measures from Citrus Research International (CRI), 6.8% relied on experience, close to 3.6% from trusted extension officers whilst the rest (0.9%) relied on the media

  • This study investigated the influence of climate change adaptation strategies on citrus production in the Limpopo province, South Africa

Read more

Summary

Introduction

Climate change substantially defines agricultural productivity as it influences several input balances, which support the entire agricultural system. The impacts of climate change are manifested in many ways, which include prolonged periods of moisture stress, high incidence of pests and diseases, increased salinity, high temperatures and floods (Khanal et al 2018a). The Integrated Panel on Climate Change (IPCC 2013) predicted an increase in temperature of between 0.8 and 4 degrees in the 21st century. In perennial crops such as citrus fruits, high temperatures may affect the budding of flowers in winter whereas during the fruit development phase, incidences of high temperature and moisture stress compromises fruit maturation and expansion (De Ollas et al 2019), impacting negatively the overall quantity and quality of fruits. The major advantage of pursuing farm level adaptation planning is that small organisations can move quickly to create adaptation strategies, which will directly benefit their communities (Picketts, Curry & Rapaport 2012)

Objectives
Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call