Abstract

Fundamental to the interpretation of bone-bearing faunal deposits is an understanding of the taphonomic processes that have modified the once living fossil community. An often neglected source of bias is that of climate-averaging, which occurs when the duration of bone accumulation exceeds the duration of an individual climatic episode. Tropical and subtropical climate change is dominated by precessional cyclicity (~21,000 year cycle), which controls monsoon rainfall intensity and thus plant communities over time. Under a climate-averaging scenario, the paleoecological characteristics of a faunal deposit represent an amalgamation of more than one phase of the precessional cycle. We investigate the degree of climate-averaging in Plio-Pleistocene bone breccias from South Africa by comparing stable isotope measurements of fossil enamel with the evidence from high-resolution speleothem paleoclimate proxies. We conclude that each of the four faunal assemblages studied are climate-averaged, having formed over a time period in excess of one-third of a precessional cycle (~7000 years). This has implications for the reconstruction of hominin paleoenvironments and estimates of Plio-Pleistocene biodiversity. We hypothesize that climate-averaging may be a common feature of tropical terrestrial vertebrate assemblages throughout the Cenozoic and Mesozoic.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call