Abstract

AbstractCentral Asia hosts the most extensive and highest topography on Earth, which is the result of the feedbacks among rock uplift, atmospheric circulation and moisture transport, and erosion. Here, we analyze 2,511 published low‐temperature thermochronometric ages as a proxy of the regional‐scale erosion of Central Asia. We compare these ages to tectonic and climate proxies, and state‐of‐the‐art paleoclimate simulations to constrain the influences of climate and tectonics on the topographic architecture of Central Asia. We observe a first‐order relationship between younger cooling ages in areas of high precipitation and older ages (Mesozoic) in areas that have been sheltered from precipitation, despite high strain rates. Thus, we suggest that climate enhances erosion in areas where rock uplift produces significant orographic gradients, whereas in the continental interior, areas which are tectonically active but have been sheltered from significant precipitation record older ages and a longer erosional history.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call