Abstract

Climatic factors act on populations at multiple timescales leading to the separation of long-term climate and shorter-term weather effects. We used passerine counts from 1995 to 2019 in subarctic Alaska (Denali National Park, USA) to assess the impacts of the prior breeding season's weather on breeding season abundance and the impacts of climate measured through shifts in elevational distribution. Weather and climate appear to have had opposing effects on the abundance of some shrub-associated species as evidenced by a positive response to nesting phase temperature over a 1-year lag and a negative response to warming-induced shifts in shrub-dominated habitats over the long term. The latter response was indicated by declines in abundance which occurred in some part through portions of these populations shifting upslope of our fixed sampling frame. Overall, theabundance of species was related to one or more of the lagged effects of weather and the effects of weather alone drove nearly twofold variation in annual abundance in most species. The effect of nesting phase temperature was a strong positive predictor at both community and individual species levels, whereas arrival phase temperature had weak support at both levels. The effects of total precipitation during the nesting phase and snowmelt timing shared mixed support at community and species levels, but generally indicated higher abundance following seasons that were drier and had earlier snowmelt. Together, our findings of opposing effects of climatic variables at different timescales have implications for understanding the mechanisms of population and distributional change in passerines in the subarctic.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call