Abstract

Analysis of palynological successions has enabled reconstruction of climate variations throughout the Late Glacial and Holocene in the tundra and forest zones of northern Eurasia. Statistical analysis allows estimation of mean annual precipitation, and mean annual and July temperatures, based on palynological assemblages. Thus, the dynamic relationships between climate and vegetation changes can be established. Throughout the Late Glacial and Holocene, climate fluctuations were more dramatic in eastern Europe than in Siberia, primarily as a result of the influence of westerly air masses. In contrast, the “autochthonous” climate of Siberia, dominated by local air masses, was less prone to influence from climate changes elsewhere in the Northern Hemisphere, and shows only an attenuated Younger Dryas signal. Mid-Holocene warming characterizes all of northern Eurasia, although the regions of Siberia most influenced by continental climates show less pronounced cooling during the later Holocene. Sharp changes between summer monsoonal and winter anti-cyclonic regimes characterize the Pacific Maritime region.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.