Abstract

Abstract The effect of the hydrology of the earth's surface is incorporated into a numerical model of the general circulation of the atmosphere developed at the Geophysical Fluid Dynamics Laboratory of the Environmental Science Services Administration (ESSA). The primitive equation of motion is used for this study. The nine levels of the model are distributed so as to resolve the surface boundary layer and stratosphere. The depletion of solar radiation and the transfer of the terrestrial radiation are computed taking into consideration cloud and atmospheric absorbers such as water vapor, carbon dioxide, and ozone. The scheme treating the hydrology of our model involves the prediction of water vapor in the atmosphere and the prediction of soil moisture and snow cover. In order to represent the mositure-holding capacity of soil, the continent is assumed to be covered by boxes, which can store limited amounts of water. The ocean surface is idealized to be a completely wet surface without any heat capacity. T...

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call