Abstract

AbstractEndozoochory, the dispersal of seeds by animal ingestion, is the most dominant mode of seed dispersal in tropical forests and is a key process shaping current and future forest dynamics. However, it remains largely unknown how endozoochory is associated with environmental conditions at regional and local scales. Here, we investigated the effects of elevation, climate, and microhabitat conditions on the proportion of endozoochorous plant species in the seed rain of the tropical Andes of southern Ecuador. Over 1 year, we measured seed rain in 162 seed traps on nine 1‐ha forest plots located at 1000, 2000, and 3000 m a.s.l. We recorded climatic conditions (mean annual temperature and rainfall) in each plot and microhabitat conditions (leaf area index and soil moisture) adjacent to each seed trap. In total, we recorded 331,838 seeds belonging to 323 morphospecies. Overall, the proportion of endozoochorous species in the seed rain decreased with elevation. The relative biomass of endozoochorous species decreased with increasing rainfall, whereas the relative seed richness of endozoochorous species increased with increasing temperature and leaf area index. These findings suggest an interplay between climate factors and microhabitat conditions in shaping the importance of endozoochorous plant species in the seed rain of tropical montane forests. We conclude that changing climatic and microhabitat conditions are likely to cause changes in the dominant dispersal modes of plant communities which may trigger changes in the current and future dynamics of tropical forests.Abstract in Spanish is available with online material.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call