Abstract
Recent decades have been marked by unprecendented environmental changes which threaten the integrity of freshwater systems and their ecological value. Although most of these changes can be attributed to human activities, disentagling natural and anthropogenic drivers remains a challenge. In this study, surface sediments from Lake Ighiel, a mid-altitude site in the Carpathian Mts (Romania) were investigated following high-resolution sedimentological, geochemical, environmental magnetic and diatom analyses supported by historical cartographic and documentary evidence. Our results suggest that between 1920 and 1960 the study area experienced no significant anthropogenic impact. An excellent correspondence is observed between lake proxy responses (e.g., growth of submerged macrophytes, high detrital input, shifts in diatom assemblages) and parameters tracking natural hydroclimate variability (e.g., temperature, NAO). This highlights a dominant natural hydroclimatic control on the lacustrine system. From 1960 however, the depositional regime shifted markedly from laminated to homogenous clays; since then geochemical and magnetic data document a trend of significant (and on-going) subsurface erosion across the catchment. This is paralleled by a shift in lake ecosystem conditions denoting a strong response to an intensified anthropogenic impact, mainly through forestry. An increase in detrital input and marked changes in the diatom community are observed over the last three decades, alongside accelerated sedimentation rates following enhanced grazing and deforestation in the catchment. Recent shifts in diatom assemblages may also reflect forcing from atmospheric nitrogen (N) deposition, a key recent drive of diatom community turnover in mountain lakes. In general, enhanced human pressure alongside intermittent hydroclimate forcing drastically altered the landscape around Lake Ighiel and thus, the sedimentation regime and the ecosystem’s health. However, paleoenvironmental signals tracking natural hydroclimate variability are also clearly discernible in the proxy data. Our work illustrates the complex link between the drivers of catchment-scale impacts on one hand, and lake proxy responses on the other, highlighting the importance of an integrated historical and palaeolimnological approach to better assess lake system changes.
Highlights
Anthropogenic activities such as changes in land-use can induce major transformations in lake systems via increased catchment erosion, and its effect on sedimentation rates and nutrient loads leading to eutrophication and ecological shifts affecting lake biota [1,2,3,4,5]
In this study we focus on Lake Ighiel, a mid-altitude site from the Apuseni Mountains (Romania) and one of the few natural records from the Romanian Carpathians providing high-resolutionenvironmental andclimatic data for the last 6000 years [18]
These events exhibit different sedimentological characteristics between the two cores and reflect different events in time; this inference is supported by the dating results (Fig 2) and diatom analysis
Summary
Anthropogenic activities such as changes in land-use can induce major transformations in lake systems via increased catchment erosion, and its effect on sedimentation rates and nutrient loads leading to eutrophication and ecological shifts affecting lake biota [1,2,3,4,5] Tracing such environmental dynamics over short timescales and assessing the type and timing of the main drivers of change are needed for a better understanding of the complex cause-effect relationship between environmental responses, anthropogenic activities and natural climate variability, and to improve management strategies [6,7,8]. This study generally indicated that human-driven soil erosion was already ubiquitous 4,000 years ago following deforestation that induced enhanced rates of sediment transfer at a global scale [11]
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.