Abstract

Abstract. This study examines the relationship between temperature levels and precipitation amounts as explanatory variables for the probability of death due to waterborne and airborne diseases in historical urban space. To date, the literature has not focused on the climatological epidemiology of 19th century Polish urban areas. We used individual mortality data from Poznań parish death registers between 1850 and 1900. Each deceased individual was assigned average monthly temperature values and precipitation amounts in the month of death, LAG1 (1-month-lagged) temperature and LAG1 rainfall, and place of residence. We studied the relationship between weather conditions and mortality using formalized statistical models reflecting the discrete nature of the response data (via multinomial logistic regression). Lagged monthly average temperature levels and lagged monthly average precipitation amounts were better predictors of airborne and waterborne disease mortality than the concurrent (non-lagged) monthly averages. The lagged effects of temperature and precipitation on waterborne and airborne diseases were significant (except for the smooth lagged average monthly temperature effect for airborne diseases). There was also significant spatial heterogeneity (differences among city quarters) in the prevalence of deaths due to waterborne and airborne diseases.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call