Abstract

Respiration (i.e., carbon dioxide production and oxygen consumption) increases as ripening is initiated in a group of harvested fruit called climacteric. This group includes many horticulturally important fruit crops, such as apples, avocados, bananas, melons, peaches, pears, and tomatoes. Other fruit, which includes cherries, citrus, and strawberries, do not exhibit an increase in respiration as they ripen and are called nonclimacteric. Measurements of carbon dioxide production by ripening apples, melons, and tomatoes revealed a well-defined climacteric, but only in harvested fruit. The respiratory climacteric was greatly diminished or absent from these fruit when they ripened while attached to the plant. Fixation of respired carbon dioxide through photosynthesis or into organic acids was insufficient to account for the diminished amount of carbon dioxide evolved from ripening attached climacteric fruit. Unlike the respiratory climacteric, an increase in ethylene production occurred in both attached and harvested climacteric fruit. Ethylene stimulates respiration in most plant tissues. The rapid rise in respiration as soon as attached ripening climacteric fruit were harvested or abscised suggests that an inhibitor of ethylene-stimulated respiration may be translocated from the plant and prevent the climacteric rise in respiration in attached ripening fruit.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.